robokudo.annotators.cluster_pose_pca¶
3D pose estimation using principal component analysis.
This module provides an annotator for:
Calculating 3D poses for object hypotheses
Using PCA for orientation estimation
Computing oriented bounding boxes
Generating visualization markers
The module uses:
Principal component analysis for axes
Eigenvalue decomposition
Coordinate frame alignment
Open3D visualization tools
Note
Requires at least 10 points per object hypothesis.
Classes¶
3D pose estimation using principal component analysis. |
Module Contents¶
- class robokudo.annotators.cluster_pose_pca.ClusterPosePCAAnnotator(name='ClusterPosePCAAnnotator')¶
-
Bases:
robokudo.annotators.core.BaseAnnotator3D pose estimation using principal component analysis.
This annotator:
Calculates 3D poses for object point clusters
Uses PCA for orientation estimation
Aligns coordinate frames with principal axes
Creates pose annotations
Generates visualization markers
Note
Requires minimum 10 points per object hypothesis.
- update()¶
-
Process object hypotheses and estimate poses.
The method:
Loads point cloud from CAS
For each object hypothesis: * Computes centroid and covariance * Performs eigenvalue decomposition * Aligns coordinate frame with principal axes * Creates pose annotations * Creates visualization markers
- Returns:
-
SUCCESS after processing
- Return type:
-
py_trees.Status