robokudo.annotators.grab_cut¶
Image segmentation using GrabCut algorithm.
This module provides an annotator for:
Refining object ROIs using GrabCut
Processing color image regions
Creating segmentation masks
Visualizing segmentation results
The module uses:
OpenCV GrabCut implementation
ROI-based initialization
Iterative segmentation
Mask-based visualization
Warning
Current implementation is incomplete and for reference only.
Classes¶
Refine the ROI of an Object Hypothesis with the GrabCut Algorithm |
Module Contents¶
- class robokudo.annotators.grab_cut.GrabCutAnnotator(name='GrabCutAnnotator')¶
-
Bases:
robokudo.annotators.core.ThreadedAnnotatorRefine the ROI of an Object Hypothesis with the GrabCut Algorithm
This annotator:
Refines object ROIs using GrabCut
Processes color image regions
Creates foreground/background models
Generates segmentation masks
Visualizes segmented regions
Warning
Current implementation only processes one object and lacks annotation creation.
- compute()¶
-
Process object hypotheses using GrabCut.
The method:
Loads color image and object hypotheses
For each hypothesis: * Extracts ROI rectangle * Creates initial mask * Initializes foreground/background models * Runs GrabCut segmentation * Creates visualization
Note
Currently only processes one object and lacks annotation creation.
- Returns:
-
SUCCESS after processing
- Return type:
-
py_trees.Status